Authors
Keywords
Abstract
The aim of this study was to synthesize and characterize (5-(6-(Furan-2-ylmethylamino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl Dihydrogen Phosphate as a potential redox drug targeting human skin cancer. The compound was synthesized through a series of chemical reactions and characterized using various spectroscopic and analytical techniques. Preliminary in vitro studies were conducted to assess its potential as a therapeutic agent against human skin cancer cells.
This manuscript outlines the synthesis of a novel compound, (5-(6-(Furan-2-ylmethylamino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl Dihydrogen Phosphate, strategically designed and synthesized as a potential redox drug for targeting human skin cancer. The synthetic pathway involved a series of meticulously optimized steps utilizing key reagents such as Furan-2-ylmethylamine, 9H-purine, and tetrahydrofuran.
The synthesized compound underwent comprehensive characterization through NMR spectroscopy, mass spectrometry, and elemental analysis, affirming its structural integrity and purity. Beyond synthesis, the compound's efficacy in modulating redox pathways relevant to human skin cancer was explored through in vitro assays, revealing promising redox-modulating properties.
This study positions the synthesized compound as a potential lead in redox drug discovery for human skin cancer treatment. The observed modulation of redox pathways signifies its potential utility in addressing the oxidative stress associated with skin cancer. Future investigations will delve into further optimization of the compound's structure and comprehensive preclinical studies, aiming to contribute to the development of effective therapeutic interventions for human skin cancer.